HYPERSTABILITY OF A SUM FORM FUNCTIONAL EQUATION RELATED DISTANCE MEASURES

Young Whan Lee

ABSTRACT. The functional equation related to a distance measure

$$f(pr,qs) + f(ps,qr) = M(r,s)f(p,q) + M(p,q)f(r,s)$$

can be generalized a sum form functional equation as follows

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = M(Q)f(P) + M(P)f(Q)$$

where f, g is information measures, P and Q are the set of n-array discrete measure, and σ_i is a permutation for each $i = 0, 1, \dots, n-1$. In this paper, we obtain the hyperstability of the above type functional equation.

1. Introduction

Throughout this paper, let (G, \cdot) denote a group and X a real normed algebra. Also let \mathbb{R} and \mathbb{C} denote the set of real and complex numbers, respectively. Let $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$ be a set of positive real numbers.

Chung et al. [2] solved the following functional equation related to distance measures

(1.1)
$$f(pr,qs) + f(ps,qr) = (r+s)f(p,q) + (p+q)f(r,s)$$

and

(1.2)
$$f(pr, qs) + f(ps, qr) = f(p, q)f(r, s)$$

for all p,q,r,s in the open interval (0,1) and Elfen et al. [1] solved the general solution $f: G \times G \longrightarrow \mathbb{C}$ of the following functional equation

$$f(pr,qs) + f(sp,rq) = 2f(p,q) + 2f(r,s)$$

Received November 18, 2019; Accepted January 31, 2020.

²⁰¹⁰ Mathematics Subject Classification: 39B82, 39B52.

Key words and phrases: superstability, hyperstability, stability of functional equation.

This research was supported by the Daejeon University Research Grants (2019).

for all $p, q, r, s \in G$.

Y. W Lee and G. H. Kim [3] investigate the superstability for a generalized form of the equation (1.2)

$$\frac{1}{n}\sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = f(P)f(Q)$$

for all $P, Q \in G^n$, where $f: G^n \to G$ is a function and σ_i is a permutation on G.

In 2001, G. Maksa and Z. Páles [4] proved a new type of stability of a class of linear functional equation

(1.3)
$$f(s) + f(t) = \frac{1}{n} \sum_{i=1}^{n} f(s\varphi_i(t)), \quad s, t \in S$$

where f is a functional on a semigroup $S := (S, \cdot)$ and where $\varphi_1, \dots, \varphi_n : S \to S$ pairwise distinct automorphisms of S such that the set $\{\varphi_1, \dots, \varphi_n\}$ is a group with the operation of composition of mappings. More precisely, they proved that if the error bound for the difference of two sides of (1.3) satisfies a certain asymptotic property, then in fact, the two sides have to be equal. Such a phenomenon is called the *hyperstability* of the functional equation on S.

In 2015, M. Sirouni and S. Kabbaj [6] investigated of the hyperstability of an Euler-Lagrange type quadratic functional equation

$$f(x+y) + \frac{f(x-y) + f(y-x)}{2} = 2f(x) + 2f(y)$$

in class of functions from an abelian group into Banach space. This equation is established the general solution and stability by M. J. Rassias [5].

In this paper, we obtain a generalized form of the equation (1.1) related to distance measures and prove the hyperstability of following functional equations

(1.4)
$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = M(Q)f(P) + M(P)f(Q),$$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = M(Q)f(P) + M(P)f(Q) + M(P \cdot Q)\theta(M(P), M(Q)),$$
(1.5)

(1.6)
$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = f(P) + f(Q)$$

and

(1.7)
$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = f(P) + f(Q) + \theta(M(P), M(Q)).$$

2. Hyperstability of equations

For all $P = (p_1, p_2, \dots, p_n), Q = (q_1, q_2, \dots, q_n) \in G^n$, let $\sigma_i : G^n \to G^n$ be a permutation given by

$$\sigma_0(p_1, p_2, \dots, p_n) = (p_1, p_2, \dots, p_n),$$

$$\sigma_i(p_1, p_2, \dots, p_n) = (p_{i+1}, \dots, p_n, p_1, p_2, \dots, p_i)$$

for each $i=1,\ldots,n-1$ and $P\cdot Q=(p_1q_1,p_2q_2,\ldots,p_nq_n)$. It can be easily checked that for all $P,Q,W\in G$ and $i,j=0,1,\cdots,n-1$

- (a) $\sigma_n(P) = \sigma_0 P$,
- (b) $\sigma_{n+j}(P) = \sigma_j P$,
- (c) $(P \cdot \sigma_i(Q)) \cdot \sigma_j(W) = P \cdot (\sigma_i(Q) \cdot \sigma_j(W)),$
- (d) $P \cdot \sigma_i(Q \cdot \sigma_j(W)) = P \cdot \sigma_i(Q) \cdot (\sigma_i \sigma_j(W)),$

(e)
$$\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sigma_i(Q) \cdot \sigma_j(W) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sigma_i(Q) \cdot \sigma_{i+j}(W).$$

For convenience, any solution $M: G^n \to X$ of the functional equation

$$M(P \cdot Q) = M(P)M(Q),$$

 $M(\sigma_i(P)) = M(P), (P, Q \in G^n, i = 0, 1, \dots, n-1)$

is called a *strong multiplicative* function. For example, consider a function $M: \mathbb{R}^n \to \mathbb{R}$ defined by $M(P) = p_1 p_2 \cdots p_n = \prod_{i=1}^n p_i$ for any $P = (p_1, p_2, \cdots, p_n) \in \mathbb{R}^n$. Then M is strong multiplicative.

Note that any solution $F: G \times G \to X$ of the functional equation

$$F(x,y) + F(xy,z) = F(x,yz) + F(y,z), \quad (x,y,z \in G)$$

is called a cocycle on $G \times G$ into X and the equation is called the cocycle equation. It is well known that the cocycle equation play an important role in the hyperstability.

Lemma 2.1. Let $f:G^n\to X$ be an arbitrary function, $\theta:X\times X\to X$ a cocycle and $M:G^n\to X$ a strong multiplicative function. Then the function $F:G^n\to S$ defined by

$$F(P,Q) = f(P) + f(Q) - \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) + \theta(M(P), M(Q)), \quad (P, Q \in G^n)$$

satisfies the following functional equation (2.1)

$$F(P,Q) + \frac{1}{n} \sum_{i=0}^{n-1} F(P \cdot \sigma_i(Q), W) = F(Q, W) + \frac{1}{n} \sum_{i=0}^{n-1} F(P, Q \cdot \sigma_i(W))$$

for all $P, Q, W \in G^n$.

Proof. (1) For all $P, Q, W \in G^n$, we have

$$\begin{split} F(P,Q) + \frac{1}{n} \sum_{i=0}^{n-1} F(P \cdot \sigma_i(Q), W) \\ = & f(P) + f(Q) - \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) + \theta(M(P), M(Q)) \\ & + \frac{1}{n} \sum_{i=0}^{n-1} \left\{ f(P \cdot \sigma_i(Q)) + f(W) - \frac{1}{n} \sum_{j=0}^{n-1} f(P \cdot \sigma_i(Q) \cdot \sigma_j(W)) \right\}. \\ & + \frac{1}{n} \sum_{i=0}^{n-1} \theta(M(P \cdot \sigma_i(Q)), M(W)) \\ = & f(P) + f(Q) + f(W) - \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(P \cdot \sigma_i(Q) \cdot \sigma_j(W)) \\ & + \theta(M(P), M(Q)) + \theta(M(P)M(Q), M(W)). \end{split}$$

(2) Similarly, for all $P, Q, W \in G^n$, we deduce

$$\begin{split} F(Q,W) + \frac{1}{n} \sum_{i=0}^{n-1} F(P,Q \cdot \sigma_i(W)) \\ = & f(Q) + f(W) - \frac{1}{n} \sum_{i=0}^{n-1} f(Q \cdot \sigma_i(W)) + \theta(M(Q),M(W)) \\ + \frac{1}{n} \sum_{i=0}^{n-1} \left\{ f(P) + f(Q \cdot \sigma_i(W)) - \frac{1}{n} \sum_{j=0}^{n-1} f(P \cdot \sigma_j(Q \cdot \sigma_i(W))) \right\} \\ + \frac{1}{n} \sum_{i=0}^{n-1} \theta(M(P),M(Q \cdot \sigma_i(W)) \\ = & f(Q) + f(W) + f(P) - \frac{1}{n^2} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(P \cdot \sigma_i((Q \cdot \sigma_i(W)))) \\ + & \theta(M(Q),M(W)) + \theta(M(P),M(Q)(W)). \end{split}$$

Since, for any $P, Q, W \in G^n$,

$$\begin{split} \theta(M(P), M(Q)) + \theta(M(P)M(Q), M(W)) \\ &= \theta(M(Q), M(W)) + \theta(M(P), M(Q)M(W)). \end{split}$$

The functional equation (2.1) turn out to be valid.

THEOREM 2.2. Let $\varepsilon > 0$ and $M : G^n \to \mathbb{R}_+$ be a strong multiplicative function with $M(P_0) > 1$ for some $P_0 \in G^n$. Assume also that a function $\theta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ is a cocycle and a function $f : G^n \to \mathbb{R}$ satisfy the inequality

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - M(Q) f(P) - M(P) f(Q) - M(P \cdot Q) \theta(M(p), M(Q)) \right| \le \varepsilon$$
(2.2)

for all $P, Q \in G^n$. Then f is a solution of the functional equation (1.5). That is, for all $P, Q \in G^n$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = M(Q)f(P) + M(P)f(Q) + M(P \cdot Q)\theta(M(p), M(Q)).$$

Proof. For any $P, Q \in G^n$, we define

$$L(P) := \frac{f(P)}{M(P)}$$

and

$$F(P,Q) := L(P) + L(Q) - \frac{1}{n} \sum_{i=0}^{n-1} L(P \cdot \sigma_i(Q)) + M(P \cdot Q)\theta(M(p), M(Q)).$$

With these notations, the stability inequality (2.2) reduces to

$$\left| F(P,Q) \right| = \left| \frac{1}{n} \sum_{i=0}^{n-1} L(P \cdot \sigma_i(Q)) - L(P) - L(Q) + \theta(M(p), M(Q)) \right|$$

$$\leq \frac{\varepsilon}{M(P)M(Q)}$$

for all $P, Q \in G^n$. By Lemma 2.1, we have

$$F(P,Q) + \frac{1}{n} \sum_{i=0}^{n-1} F(P \cdot \sigma_i(Q), W) = F(Q, W) + \frac{1}{n} \sum_{i=0}^{n-1} F(P, Q \cdot \sigma_i(W))$$

for all $P, Q, W \in G^n$. Letting $P = P_0^k$, we have, for any $Q, W \in G^n$

$$\begin{aligned} \left| F(Q, W) \right| &\leq \left| \frac{1}{n} \sum_{i=0}^{n-1} F(P_0^k, Q \cdot \sigma_i(W)) \right| \\ &+ \left| F(P_0^k, Q) \right| + \left| \frac{1}{n} \sum_{i=0}^{n-1} F(P_0^k \cdot \sigma_i(Q), W) \right| \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \frac{\varepsilon}{M(P_0)^k M(Q \cdot W)} + \frac{\varepsilon}{M(P_0)^k M(Q)} + \frac{1}{n} \sum_{i=0}^{n-1} \frac{\varepsilon}{M(P_0)^k M(Q \cdot W)} \\ &\leq \frac{1}{M(P_0)^k} \left(\frac{2n\varepsilon}{M(Q \cdot W)} + \frac{\varepsilon}{M(Q)} \right) \\ &\longrightarrow 0 \end{aligned}$$

as $k \to \infty$. And so F(Q, W) = 0 for all $Q, W \in G^n$. Thus f is a solution of (1.5).

By Theorem 2.2 with $\theta = 0$, we have the following theorem.

THEOREM 2.3. Let $\varepsilon > 0$ and $M : G^n \to \mathbb{R}_+$ be a strong multiplicative function with $M(P_0) > 0$ for some $P_0 \in G^n$ Assume also that a function $f : G^n \to \mathbb{R}$ satisfy the inequality

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - M(Q)f(P) - M(P)f(Q) \right| \le \varepsilon$$

for all $P, Q \in G^n$. Then f is a solution of the functional equation (1.4). That is, for all $P, Q \in G^n$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = M(Q)f(P) + M(P)f(Q).$$

COROLLARY 2.4. Let $\varepsilon > 0$ and a function $f : \mathbb{R}^n_+ \to \mathbb{R}$ satisfy the inequality

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - \left(\prod_{i=1}^n q_i \right) f(P) - \left(\prod_{i=1}^n p_i \right) f(Q) \right| \le \varepsilon$$

for all $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n) \in \mathbb{R}^n_+$. Then

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = (\prod_{i=1}^n q_i) f(P) + (\prod_{i=1}^n p_i) f(Q)$$

for all $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n) \in \mathbb{R}^n_+$.

Proof. Let $M(P) = \prod_{i=1}^n p_i = p_1 p_2 \cdots p_n$ for any $P = (p_1, p_2 \cdots p_n) \in \mathbb{R}^n_+$. Then M is a strong multiplicative function and $M(P_0) = 2$ for $P_0 = (2, 1, \dots, 1)$. By Theorem 2.3, we complete the proof.

THEOREM 2.5. Let $\varepsilon: G^n \times G^n \to \mathbb{R}$ be function for which there exists a sequence $(W_k)_{k \in \mathbb{N}}$ of elements of G^n satisfying the following condition:

$$\lim_{k \to \infty} \varepsilon(W_k \cdot P, Q) = 0, \qquad P, Q \in G^n.$$

Also let $M: G^n \to X$ be a strong multiplicative function, a function $\theta: S \times S \to X$ be a cocycle, and a function $f: G^n \to X$ satisfy the inequality

$$\left| \left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - f(P) - f(Q) + \theta(M(P), M(Q)) \right| \right| \le \varepsilon(P, Q)$$

for all $P, Q \in G^n$. Then f is a solution of the functional equation (1.7). That is, for all $P, Q \in G^n$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - f(P) - f(Q) + \theta(M(P), M(Q)).$$

Proof. For any $P, Q \in G^n$, we define

$$F(P,Q) := L(P) + L(Q) - \frac{1}{n} \sum_{i=0}^{n-1} L(P \cdot \sigma_i(Q)) + M(P \cdot Q)\theta(M(p), M(Q)).$$

By Lemma 2.1, we have

$$F(P,Q) + \frac{1}{n} \sum_{i=0}^{n-1} F(P \cdot \sigma_i(Q), W) = F(Q, W) + \frac{1}{n} \sum_{i=0}^{n-1} F(P, Q \cdot \sigma_i(W))$$

for all $P, Q, W \in G^n$. Letting $P = W_k \cdot P$, we have, for any $Q, W \in G^n$

$$\begin{split} \left| F(Q, W) \right| &\leq \left| \frac{1}{n} \sum_{i=0}^{n-1} F(W_k \cdot P, Q \cdot \sigma_i(W)) \right| \\ &+ \left| F(W_k \cdot P, Q) \right| + \left| \frac{1}{n} \sum_{i=0}^{n-1} F(W_k \cdot P \cdot \sigma_i(Q), W) \right| \\ &\leq \frac{1}{n} \sum_{i=0}^{n-1} \varepsilon(W_k \cdot P, Q \cdot \sigma_i(W)) + \varepsilon(W_k \cdot P, Q) + \frac{1}{n} \sum_{i=0}^{n-1} \varepsilon(W_k \cdot P \cdot \sigma_i(Q), W) \\ &\longrightarrow 0 \end{split}$$

as $k \to \infty$. And so F(Q, W) = 0 for all $Q, W \in G^n$. Thus f is a solution of (1.7).

By Theorem 2.5 with $\theta = 0$, we have the following theorem.

THEOREM 2.6. Let $\varepsilon: G^n \times G^n \to \mathbb{R}$ be function for which there exists a sequence $(W_k)_{k \in \mathbb{N}}$ of elements of G^n satisfying the following condition:

$$\lim_{k \to \infty} \varepsilon(W_k \cdot P, Q) = 0, \qquad P, Q \in G^n.$$

Assume also that a function $f: G^n \to X$ satisfy the inequality

$$\left| \left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - f(P) - f(Q) \right| \right| \le \varepsilon(P, Q)$$

for all $P, Q \in G^n$. Then f is a solution of the functional equation (1.6). That is, for all $P, Q \in G^n$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = f(P) + f(Q).$$

COROLLARY 2.7. Let $\varepsilon: G^n \times G^n \to \mathbb{R}_+$ be function for which there exists a sequence $(W_k)_{k \in \mathbb{N}}$ of elements of G^n satisfying the following condition:

$$\lim_{k \to \infty} \varepsilon(W_k \cdot P, Q) = 0, \qquad P, Q \in G^n.$$

and let a function $\theta: S \times S \to X$ be a cocycle. Assume also that a function $f: G^n \to X$ satisfy the inequality

$$\left| \left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - f(P) - f(Q) + \theta \left(\prod_{i=1}^n p_i, \prod_{i=1}^n q_i \right) \right| \right| \le \varepsilon(P, Q)$$

for all $P=(p_1,\cdots,p_n), Q=(q_1,\cdots,q_n)\in G^n$. Then, for all $P=(p_1,\cdots,p_n), Q=(q_1,\cdots,q_n)\in G^n$

$$\frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) = f(P) + f(Q) + \theta(\prod_{i=1}^n p_i, \prod_{i=1}^n q_i).$$

COROLLARY 2.8. Assume that a function $f: \mathbb{R}^n_+ \to X$ satisfy the inequality

$$\left| \left| \frac{1}{n} \sum_{i=0}^{n-1} f(P \cdot \sigma_i(Q)) - f(P) - f(Q) \right| \right| \le \prod_{i=1}^n p_i \prod_{i=1}^n q_i$$

for all $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n)\mathbb{R}_+^n$. Then f is a solution of the functional equation (1.6).

Proof. Define a function $\varepsilon : \mathbb{R}^n_+ \times \mathbb{R}^n_+ \to \mathbb{R}_+$ by $\varepsilon(P,Q) := \prod_{i=1}^n p_i \prod_{i=1}^n q_i$ for any $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n) \in \mathbb{R}^n_+$. Choose a sequence $W_k = (\frac{1}{k}, \dots, \frac{1}{k})$ in \mathbb{R}^n_+ . Then

$$\varepsilon(W_k \cdot P, Q) = \frac{1}{k^n} \prod_{i=1}^n p_i \prod_{i=1}^n q_i \to 0$$

as $k \to \infty$ for any $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n) \in \mathbb{R}^n_+$. By Theorem 4, f is a solution of the functional equation (1.6).

EXAMPLE 2.9. Assume that a function $f: \mathbb{R}^3_+ \to X$ satisfy the inequality

$$\left| \left| f(p_1q_1, p_2q_2, p_3q_3) + f(p_1q_2, p_2q_3, p_3q_1) + f(p_1q_3, p_2q_1, p_3q_2) \right| - 3f(p_1, p_2, p_3) - 3f(q_1, q_2, q_3) \right|$$

$$\leq p_1p_2p_3g_1q_2q_3$$

for all
$$P = (p_1, p_2, p_3), Q = (q_1, q_2, q_3) \in \mathbb{R}^3_+$$
. Then we have
$$f(p_1q_1, p_2q_2, p_3q_3) + f(p_1q_2, p_2q_3, p_3q_1) + f(p_1q_3, p_2q_1, p_3q_2)$$
$$= 3f(p_1, p_2, p_3) + 3f(q_1, q_2, q_3)$$

for all
$$P = (p_1, p_2, p_3), Q = (q_1, q_2, q_3) \in \mathbb{R}^3_+$$
.

References

- [1] H. H. Elfen, T. Riedel, and P. K. Sahoo, A variant of the quadratic functional equation on groups an an application, Bull. Korean Math. Soc., **54** (2017), no. 6, 2165-3016.
- [2] J. K. Chung, Pl. Kannappan, C. T. Ng, and P. K. Sahoo, Measures of distance between probability distributions, J. Math. Anal. Appl., 138 (1989), 280-292.
- [3] Y. W. Lee and G. H. Kim, Superstability of the functional equation related to distance measures, J. Inequality and Application, DOI: 10.1186/s13660-015-0880-4 (2015)
- [4] G. Maksa and Z Páles, Hyperstability of a class of linear functional equations, Acta Mathematica Academiae Paedagogicae Nyiregyháziensis, 17 (2001), no. 2, 107-112.
- [5] M. J. Rassias, J. M. Rassias product-sum stability of an Euler-Lagrange functional equation, J. Nonlinear Science and its App., 3 (2010), no. 4, 265-271.
- [6] M. Sirouni and S. Kabbaj, The ε -hyperstability of an Euler-lagrange type quadratic functional equations in Banach spaces, British J. of Math. & Computer Science, **6** (2015), no. 6, 481-493.

Department of Information Security, Daejeon University, Daejeon 300-716, Korea E-mail: ywlee@dju.kr